Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that if `x, y, z` are different and `Delta = abs{:(x,x^2, 1+ x^3),(y , y^2, 1+ y^3),(z,z^2, 1+ z^3):} = 0`, then `1+ xyz = 0`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

If x,y,z are different and Delta= {:|(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|=0 , show that xyz=-1

If x, y, z are all distinct and |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3))|=0 then value of x y z is :

Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,z],[x,y,a+z]]|=a^2(a+x+y+z)

Using the properties of determinants, show that : |[[x, y, z],[x^2, y^2, z^2],[x,y,z]]|= 0 .

Without expanding, prove that Delta = abs{:(x+y, y + z, z+ x),(z, x , y),(1,1,1):} = 0

Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinants, prove that : {:|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Let a, b, and c be three real numbers satisfying [(a,b,c)][[1,9,7],[...

    Text Solution

    |

  2. Let omega be a solution of z^3-1 = 0 If a = 2 , b=8 and c =7 then the ...

    Text Solution

    |

  3. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  4. A complex number U = 4+2i.The value of |U| is

    Text Solution

    |

  5. Let A be the set of all 3× 3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  6. Let A be the set of all 3xx3 symmetric matrices all of whoes entries...

    Text Solution

    |

  7. For a 2xx2 matrix, A = [a(ij)], whose elements are given by a(ij) = ...

    Text Solution

    |

  8. If A is a square matrix such that A^2 = A, then write the value of (I+...

    Text Solution

    |

  9. Evaluate the following determinants: {:|(3,x),(x,1)| = |(3,2),(4,1)|

    Text Solution

    |

  10. If Delta={:|(1,2,3),(2,0,1),(5,3,8)|, write the minor of the element a...

    Text Solution

    |

  11. If A = [[3,1],[-1,2]], show thatA^2-5A +7I = O

    Text Solution

    |

  12. If A = [[costheta,sintheta],[-sintheta,costheta]] then prove that A^n...

    Text Solution

    |

  13. If A = {:[(cosalpha, sinalpha),(-sinalpha, cosalpha)], A'A=I.

    Text Solution

    |

  14. Using elementary transformations find the inverse of [[2,0,-1],[5,1,0]...

    Text Solution

    |

  15. Using properties of determinants, prove that if x, y, z are different ...

    Text Solution

    |

  16. If A = {:[(1,2,3),(0,-1,4),(3,2,1)], find (A')^-1

    Text Solution

    |

  17. Solve by matrix method 2/x + 3/y + 10/z = 4 , 4/x - 6/y + 5/z = 1 , ...

    Text Solution

    |

  18. Let A = [[0,1],[0,0]] , show that (aI + bA)^n = a^nI + na^(n-1) bA, w...

    Text Solution

    |

  19. Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^...

    Text Solution

    |

  20. Use product [[1,-1,2],[0,2,-3],[3,-2,4]][[-2,0,1],[9,2,-3],[6,1,-2]] t...

    Text Solution

    |