Home
Class 12
MATHS
Using properties of determinants, show t...

Using properties of determinants, show that: `|[[(b+c)^2, a^2, a^2],[b^2, (c+a)^2, b^2],[c^2,c^2,(a+b)^2]]|= 2abc (a+b+c)^3`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • EXCLUSIVELY FOR JEE(ADVANCED)

    MODERN PUBLICATION|Exercise EXERCISE|38 Videos

Similar Questions

Explore conceptually related problems

Using the properties of determinant, show that : |[1,a+b,a^2+b^2],[1,b+c,b^2+c^2],[1,c+a,c^2+a^2]| = (a-b)(b-c)(c-a)

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using the properties of determinants show that : |[[1, a^2+bc, a^3],[1,b^2+ac,b^3],[1,c^2+ab,c^3]]|=(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Using the properties of determinants show that : |[[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]]|=(ab+bc+ca)^3

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)

Using the properties of determinants show that : |[[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]]|=(a-b)(b-c)(c-a)(ab+bc+ca) .

Use properties of determinants ot evaluate: {:|(2,a,abc),(2,b,bca),(2,c,cab)|

MODERN PUBLICATION-DETERMINANTS-EXERCISE
  1. Let a, b, and c be three real numbers satisfying [(a,b,c)][[1,9,7],[...

    Text Solution

    |

  2. Let omega be a solution of z^3-1 = 0 If a = 2 , b=8 and c =7 then the ...

    Text Solution

    |

  3. If A= ((1,0,0),(2,1,0),(3,2,1)), U(1), U(2), and U(3) are column matri...

    Text Solution

    |

  4. A complex number U = 4+2i.The value of |U| is

    Text Solution

    |

  5. Let A be the set of all 3× 3 symmetric matrices all of whose either 0 ...

    Text Solution

    |

  6. Let A be the set of all 3xx3 symmetric matrices all of whoes entries...

    Text Solution

    |

  7. For a 2xx2 matrix, A = [a(ij)], whose elements are given by a(ij) = ...

    Text Solution

    |

  8. If A is a square matrix such that A^2 = A, then write the value of (I+...

    Text Solution

    |

  9. Evaluate the following determinants: {:|(3,x),(x,1)| = |(3,2),(4,1)|

    Text Solution

    |

  10. If Delta={:|(1,2,3),(2,0,1),(5,3,8)|, write the minor of the element a...

    Text Solution

    |

  11. If A = [[3,1],[-1,2]], show thatA^2-5A +7I = O

    Text Solution

    |

  12. If A = [[costheta,sintheta],[-sintheta,costheta]] then prove that A^n...

    Text Solution

    |

  13. If A = {:[(cosalpha, sinalpha),(-sinalpha, cosalpha)], A'A=I.

    Text Solution

    |

  14. Using elementary transformations find the inverse of [[2,0,-1],[5,1,0]...

    Text Solution

    |

  15. Using properties of determinants, prove that if x, y, z are different ...

    Text Solution

    |

  16. If A = {:[(1,2,3),(0,-1,4),(3,2,1)], find (A')^-1

    Text Solution

    |

  17. Solve by matrix method 2/x + 3/y + 10/z = 4 , 4/x - 6/y + 5/z = 1 , ...

    Text Solution

    |

  18. Let A = [[0,1],[0,0]] , show that (aI + bA)^n = a^nI + na^(n-1) bA, w...

    Text Solution

    |

  19. Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^...

    Text Solution

    |

  20. Use product [[1,-1,2],[0,2,-3],[3,-2,4]][[-2,0,1],[9,2,-3],[6,1,-2]] t...

    Text Solution

    |