Home
Class 12
MATHS
If x=t^2, y = t^3, then (d^2y)/(dx^2) is...

If `x=t^2, y = t^3, `then `(d^2y)/(dx^2)` is

A

`3/2`

B

`3/(4t)`

C

`3/(2t)`

D

`(3t)/2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|211 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos

Similar Questions

Explore conceptually related problems

If x = log t^2 , y = log t^3 , then (dy)/(dx) is

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x^2 + y^2 = a^2 , prove that (d^2y)/(dx^2) = -a^2/y^3

If x = g(t) and y = f(t) , find (d^2y)/(dx^2) as a function of t.

If y=at^2+2bt-c and t = ax^2+2bx+c , then (d^3y)/(dx^3) equals

If y^3-y=2x , prove that (d^2y)/(dx^2)=-(24 y)/((3y^2-1)^3) .

If x=ct, y = c/t , find dy/dx at t = 2

If x = a { cos t + log|tan t/2|} and y = a sin t, 0 < t < pi/2 , find (d^2y)/(dx^2)