Home
Class 12
MATHS
If y =e^(sin(logx), then the value of dy...

If `y =e^(sin(logx)`, then the value of `dy/dx` is

A

`e^(cos(logx))`

B

`e^(sin(logx)). Cos(logx)`

C

`(e^(sin(logx). Cos (logx))/x`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE|588 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|211 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise EXERCISE|326 Videos

Similar Questions

Explore conceptually related problems

If y + sin y = cosx, then find the values of 'y' for which dy/dx is valid.

If y=x^(2)+sin^(-1)x+log_(e)x, then find (dy)/(dx)

If y=x^(sin x), then find (dy)/(dx)

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If xy = e^(x-y), find dy/dx

If y=e^(x)sin x , then find (dy)/(dx)

If sin y = x sin (a + y), then prove that (dy)/(dx) = (sin^(2) (a + y))/(sin a) .

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If y = sqrt(sin x + y) , then (dy)/(dx) is equal to