Home
Class 12
MATHS
A square piece of tin of side 24 cm is t...

A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each comer and folding up the flaps to form a box. What should be the side of square to be cut off so that the volume of box is maximum also find the volume ?

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE|433 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|211 Videos

Similar Questions

Explore conceptually related problems

A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each comer and folding up the flaps to form a box. What should be the side of square to be cut off so that the volume of box is maximum and also find the volume of box ?

A square ·piece of tin of side 12 cm is to be made into a box without a top by cutting a square from each corner and folding up the flaps to form a box. What should be the side of square to be cut off'. so that the volume of box is maximum and also find the volume of box.

A square sheet of tin of size 24 cm is to be made into a box without top by cutting off squares from each comer and folding up the flaps. What should be the side of the 'square to be cut off so that the volume of the box is maximum ?

A square sheet of tin of side 36 cm is to be made into a box without top by cutting off squares from each comer and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?

A square sheet of tin whose side is 18 cm to be made into a box without top by cutting off squares from each comer and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?

A rectangular sheet of tin 45 cm x 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible.

MODERN PUBLICATION-APPLICATION OF DERIVATIVES-EXERCISE
  1. A square piece of tin of side 24 cm is to be made into a box without t...

    Text Solution

    |

  2. Find the rate of change of the area of a circle with respect to its ra...

    Text Solution

    |

  3. Find the rate of change of the area of a circle with respect to its ra...

    Text Solution

    |

  4. An edge of a variable cube is increasing at the rate of 3 cm/s. How fa...

    Text Solution

    |

  5. The radius of a soap-bubble is increasing at the rate of 0.2cm/s. Find...

    Text Solution

    |

  6. The radius of a circle is increasing at the rate of 0.7 cm/s. What is ...

    Text Solution

    |

  7. The radius of a circle is increasing uniformly at the rate of 4 cm per...

    Text Solution

    |

  8. If the area of a circle increases uniformly, then show that the rate o...

    Text Solution

    |

  9. The radius of a circle is increasing uniformly at the rate of 3 cm/s. ...

    Text Solution

    |

  10. The radius of an air bubble is increasing at the rate of 1/2 cm/s. At...

    Text Solution

    |

  11. The radius of spherical balloon is increasing at the rate 5 cm per sec...

    Text Solution

    |

  12. The radius of a spherical soap bubble is increasing at the rate of 0.3...

    Text Solution

    |

  13. A balloon, which always remains spherical, has a variable diameter 3/2...

    Text Solution

    |

  14. A balloon, which always remains spherical on inflation, is being infla...

    Text Solution

    |

  15. The volume of a cube is increasing at the rate of 9 "cm"^(3)//sec. How...

    Text Solution

    |

  16. The volume of a cube is increasing at the rate of 8 cm^3/s. How fast i...

    Text Solution

    |

  17. The volume of a cube is increasing at the rate of 7 cubic metre per se...

    Text Solution

    |

  18. A particle moves along the curve y=4/(3)x^(3)+5. Find the points on th...

    Text Solution

    |

  19. A particle move along the curve 6y = x^3 +2. Find the points on the cr...

    Text Solution

    |

  20. The radius of a cylinder increases at the rate of 1 cm/s and its heigh...

    Text Solution

    |

  21. The contentment obtained after eating X-units of a new dish at a trial...

    Text Solution

    |