Home
Class 14
MATHS
prove that ((1-tanA)/(1-cotA))^2=tan^2A...

prove that `((1-tanA)/(1-cotA))^2=tan^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (x) ((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A

Prove the following identities, where the angles involved are acute angles for which the expressions are defined. : ((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A .

Prove that : (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove that: (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove that : (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove that: (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. ((1+tan^(2)A)/(1+cot^(2)A))=((1-tanA)/(1-cotA))^(2)=tan^(2)A

Prove that (cotA-tanA)/(cotA+tanA)=cos2A

Prove that (tanA)/((1-cotA))+(cotA)/((1-tanA))=(1+tanA+cotA).