Home
Class 12
MATHS
The value of the definite integral int(...

The value of the definite integral `int_(pi//24)^(5pi//24)(dx)/(1+root(3)(tan2x))` is :

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(pi)/(12)`

D

`(pi)/(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{dx}{1 + \sqrt[3]{\tan(2x)}} \] we can use a substitution technique that involves replacing \( x \) with \( \frac{\pi}{4} - x \). ### Step 1: Substitute \( x = \frac{\pi}{4} - x \) First, we calculate the new limits of integration: - When \( x = \frac{\pi}{24} \): \[ \frac{\pi}{4} - \frac{\pi}{24} = \frac{6\pi}{24} - \frac{\pi}{24} = \frac{5\pi}{24} \] - When \( x = \frac{5\pi}{24} \): \[ \frac{\pi}{4} - \frac{5\pi}{24} = \frac{6\pi}{24} - \frac{5\pi}{24} = \frac{\pi}{24} \] Thus, the integral becomes: \[ I = \int_{\frac{5\pi}{24}}^{\frac{\pi}{24}} \frac{dx}{1 + \sqrt[3]{\tan(2(\frac{\pi}{4} - x))}} \] ### Step 2: Simplify the integrand Using the identity \( \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) \): \[ \tan(2(\frac{\pi}{4} - x)) = \tan\left(\frac{\pi}{2} - 2x\right) = \cot(2x) \] Thus, we can rewrite the integral: \[ I = \int_{\frac{5\pi}{24}}^{\frac{\pi}{24}} \frac{dx}{1 + \sqrt[3]{\cot(2x)}} \] ### Step 3: Change the limits of integration Reversing the limits of integration gives: \[ I = -\int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{dx}{1 + \sqrt[3]{\cot(2x)}} \] ### Step 4: Combine the two expressions for \( I \) Now, we have two expressions for \( I \): 1. \[ I = \int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{dx}{1 + \sqrt[3]{\tan(2x)}} \] 2. \[ I = -\int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \frac{dx}{1 + \sqrt[3]{\cot(2x)}} \] Adding these two equations gives: \[ 2I = \int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} \left( \frac{1}{1 + \sqrt[3]{\tan(2x)}} + \frac{1}{1 + \sqrt[3]{\cot(2x)}} \right) dx \] ### Step 5: Simplify the integrand Notice that: \[ \frac{1}{1 + \sqrt[3]{\tan(2x)}} + \frac{1}{1 + \sqrt[3]{\cot(2x)}} = 1 \] Thus, we have: \[ 2I = \int_{\frac{\pi}{24}}^{\frac{5\pi}{24}} 1 \, dx \] ### Step 6: Calculate the integral Now, we can compute the integral: \[ 2I = \left[ x \right]_{\frac{\pi}{24}}^{\frac{5\pi}{24}} = \frac{5\pi}{24} - \frac{\pi}{24} = \frac{4\pi}{24} = \frac{\pi}{6} \] ### Step 7: Solve for \( I \) Now, divide both sides by 2: \[ I = \frac{\pi}{12} \] ### Final Result Thus, the value of the definite integral is: \[ \boxed{\frac{\pi}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION -B)|20 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Evaluate the definite integrals int_(0)^((pi)/(4))(tan x)dx

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

The value of the definite integral int _(-(pi//2))^(pi//2)(cos ^(2) x )/(1+ 5 ^(x)) equal to:

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of the definite integral,int_(0)^((pi)/(2))(sin5x)/(sin x)dx is

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

Value of the integral int _(-pi//2)^(pi//2) cos x dx is

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-Mathematics (Section A )
  1. The value of the definite integral int(pi//24)^(5pi//24)(dx)/(1+root(...

    Text Solution

    |

  2. Consider the two statements : (S1) : (p to q) vv ( ~ q to p) is a ta...

    Text Solution

    |

  3. A circle C touches the line x = 2y at the point (2, 1) and intersects ...

    Text Solution

    |

  4. The locus of the mid-point of the chords of the hyperbola x^(2)-y^(2)=...

    Text Solution

    |

  5. The domain of the function cosec^(-1)((1+x)/x) is :

    Text Solution

    |

  6. A 10 inches long pencil AB with mid pointC and a small eraser P are pl...

    Text Solution

    |

  7. lim/(x to2)(sum^(9)/(n =1) x/(n(n +1) x^2 +2(2n +1)x + 4))

    Text Solution

    |

  8. Let P be the plane passing through the point (1, 2, 3) and the line of...

    Text Solution

    |

  9. If the value of the integral int0^5 (x + [x])/(e^(x - [x])) dx = alph...

    Text Solution

    |

  10. Let [t] denote the greatest integer less than or equal to t. Let f (...

    Text Solution

    |

  11. Let y(x) be the solution of the differential equation 2x^2dy + (e^y-2x...

    Text Solution

    |

  12. The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) s...

    Text Solution

    |

  13. The value of int(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

    Text Solution

    |

  14. Let A = ({:(1,0,0),(0,1,1),(1,0,0):}). Then A^(2025) - A^(2020) is eq...

    Text Solution

    |

  15. A hall has a square floor of dimension 10m xx10 m (see the figure) and...

    Text Solution

    |

  16. The point P(- 2sqrt6, sqrt3) lies on the hyperbola (x^2)/(a^2) - (y^2)...

    Text Solution

    |

  17. The local maximum value of the function f(x)=(2/x)^(x^2),xgt0, is

    Text Solution

    |

  18. A fair die is tossed until six is obtained on it. Let X be the number ...

    Text Solution

    |

  19. If sum(r=1)^(50)tan^(-1)1/(2r^2)=p, then the value of tan p is:

    Text Solution

    |

  20. If (sqrt3 + i)^(100) = 2^(99) (p + iq) , then p and q are roots of the...

    Text Solution

    |

  21. Two fair dice are thrown. The numbers on them are taken as lamda and µ...

    Text Solution

    |