Home
Class 12
MATHS
The value of the definite integral int(-...

The value of the definite integral `int_(-(pi)/(4))^((pi)/(4)) (dx)/((1+e^(x cos x))(sin^(4)x +cos^(4)x))` is equal to

A

`-(pi)/(2)`

B

`(pi)/(2sqrt2)`

C

`-(pi)/(4)`

D

`(pi)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} \] we will use symmetry properties of integrals and some substitutions. ### Step 1: Define the Integral Let \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} \] ### Step 2: Use Symmetry We can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx \] Thus, we can express \(I\) as: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{-x \cos(-x)})(\sin^4(-x) + \cos^4(-x))} \] Since \(\cos(-x) = \cos x\) and \(\sin(-x) = -\sin x\), we have: \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{-x \cos x})(\sin^4 x + \cos^4 x)} \] ### Step 3: Rewrite the Integral Now, we can rewrite \(I\) by substituting \(e^{-x \cos x}\): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{e^{x \cos x} \, dx}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} \] ### Step 4: Add the Two Expressions Now we add the two expressions for \(I\): \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \frac{1}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} + \frac{e^{x \cos x}}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} \right) dx \] This simplifies to: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 + e^{x \cos x}}{(1 + e^{x \cos x})(\sin^4 x + \cos^4 x)} \, dx \] ### Step 5: Simplify the Integral The numerator simplifies: \[ 2I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{\sin^4 x + \cos^4 x} \] ### Step 6: Use Even Function Property Since \(\sin^4 x + \cos^4 x\) is an even function, we can write: \[ 2I = 2 \int_{0}^{\frac{\pi}{4}} \frac{dx}{\sin^4 x + \cos^4 x} \] Thus, \[ I = \int_{0}^{\frac{\pi}{4}} \frac{dx}{\sin^4 x + \cos^4 x} \] ### Step 7: Change of Variables Now, we can simplify the integral further by dividing the numerator and denominator by \(\cos^4 x\): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sec^4 x \, dx}{\tan^4 x + 1} \] ### Step 8: Substitution Let \(t = \tan x\), then \(dx = \frac{dt}{1 + t^2}\) and the limits change from \(0\) to \(1\): \[ I = \int_{0}^{1} \frac{1 + \frac{1}{t^2}}{t^4 + 1} \, dt \] ### Step 9: Final Simplification After simplifying the integral, we can compute it using standard integral techniques. ### Final Result After evaluating the integral, we find that: \[ I = \frac{\pi}{4\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

int_(-(pi)/(4))^((pi)/(4))(dx)/(1+cos2x) is

Evaluate the definite integrals int_((pi)/(2))^(pi)e^(x)((1-sin x)/(1+cos x))dx

The value of the definite integral int_(0)^((3 pi)/(4))((1+x)sin x+(1-x)cos x)dx, is

int_(-pi/4)^(pi/4) dx/((1+e^(xcosx))*(sin^4x+cos^4x))

If the value of the definite integral int_((pi)/(6))^((pi)/(4))(1+cot x)/(e^(x)sin x)dx, is equal to ae^(-(pi)/(6))+be^(-(pi)/(4)) then (a+b) equals

The Integral int_((pi)/(4))^((3 pi)/(4))(dx)/(1+cos x) is equal to:

The value of the definite integral int_(0)^(3pi//4)(1+x)sin x+(1-x) cos x)dx is

Evaluate the definite integrals int_(0)^((pi)/(4))(sin x cos x)/(cos^(4)x+sin^(2)x)dx

Evaluate the definite integrals int_(0)^(1)(xe^(x)+(sin(pi x))/(4))dx

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-A)
  1. lim(nrarroo) 1/n sum(j=0)^n((2j-1)+8n)/((2j-1)+4n)

    Text Solution

    |

  2. Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(...

    Text Solution

    |

  3. The value of the definite integral int(-(pi)/(4))^((pi)/(4)) (dx)/((1+...

    Text Solution

    |

  4. Let C be the set of all complex numbers. Let S(i) = {z in C||z-3-2i|^(...

    Text Solution

    |

  5. If the area of the bounded region R= {(x,y): "max" {0, log(e)x} le y l...

    Text Solution

    |

  6. A ray of light through (2,1) is reflected at a point P on the y-axis a...

    Text Solution

    |

  7. If the coefficients of x^(7) in (x^(2)+(1)/(bx))^(11) and x^(-7) in (x...

    Text Solution

    |

  8. The compound statement (P vv Q) ^^ (~P) rArr Q is equivalent to

    Text Solution

    |

  9. If sin theta+ cos theta= (1)/(2), then 16(sin (2theta)+ cos (4theta) +...

    Text Solution

    |

  10. Let A= [(1,2),(-1,4)]. If A^(-1)= alpha I +beta A, alpha, beta in R, I...

    Text Solution

    |

  11. Let f: (-(pi)/(4), (pi)/(4)) rarr R be defined as f(x)= {((1+|sin x|...

    Text Solution

    |

  12. Let y= y(x) be solution of the differential equation log(e)((dy)/(dx))...

    Text Solution

    |

  13. Let the plane passing through the point (-1,0,-2) and perpendicular to...

    Text Solution

    |

  14. Two tangents are drawn from the point P(-1,1) to the circle x^(2)+y^(2...

    Text Solution

    |

  15. Let f: R rarr R be a function such that f(2)=4 and f'(2)=1. Then, the ...

    Text Solution

    |

  16. Let P and Q be two distinct points on a circle which has center at C(2...

    Text Solution

    |

  17. Let alpha, beta be two roots of the equation x^(2)+(20)^(1//4)x+ (5)^(...

    Text Solution

    |

  18. The probability that a randomly selected 2-digit number belongs to the...

    Text Solution

    |

  19. Let A= {(x,y) in R xx R |2x^(2)+2y^(2)-2x-2y=1}, B= {(x,y) in R xx R|4...

    Text Solution

    |

  20. The point P (a,b) undergoes the following three transformations succes...

    Text Solution

    |