Home
Class 12
MATHS
If the area of the bounded region R= {(x...

If the area of the bounded region `R= {(x,y): "max" {0, log_(e)x} le y le 2^(x), (1)/(2) le x le 2}` is `alpha (log_(e)2)^(-1) + beta (log_(e )2) +gamma`, then the value of `(alpha +beta-2gamma)^(2)` is equal to

A

8

B

2

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the area of the bounded region \( R = \{(x,y): \max\{0, \log_e x\} \leq y \leq 2^x, \frac{1}{2} \leq x \leq 2\} \). ### Step 1: Understand the boundaries of the region The region is bounded by: 1. The curve \( y = 2^x \) 2. The curve \( y = \log_e x \) (or \( y = \ln x \)) 3. The vertical lines \( x = \frac{1}{2} \) and \( x = 2 \) ### Step 2: Determine the points of intersection We need to find the points where \( y = \log_e x \) intersects \( y = 2^x \) within the interval \( \left[\frac{1}{2}, 2\right] \). 1. Set \( \log_e x = 2^x \). 2. This is a transcendental equation, but we can evaluate it at specific points: - At \( x = 1 \): \( \log_e 1 = 0 \) and \( 2^1 = 2 \) (not an intersection). - At \( x = 2 \): \( \log_e 2 \) and \( 2^2 = 4 \) (not an intersection). - At \( x = \frac{1}{2} \): \( \log_e \frac{1}{2} = -\log_e 2 \) and \( 2^{\frac{1}{2}} = \sqrt{2} \) (not an intersection). Since \( \log_e x \) starts below \( 2^x \) and eventually grows slower than \( 2^x \), we conclude that \( \log_e x \) does not intersect \( 2^x \) within the interval. ### Step 3: Set up the area integral The area \( A \) can be computed as: \[ A = \int_{\frac{1}{2}}^{2} (2^x - \log_e x) \, dx \] ### Step 4: Calculate the integral 1. Compute \( \int 2^x \, dx \): \[ \int 2^x \, dx = \frac{2^x}{\log_e 2} + C \] 2. Compute \( \int \log_e x \, dx \): \[ \int \log_e x \, dx = x \log_e x - x + C \] ### Step 5: Evaluate the definite integrals Now, evaluate: \[ A = \left[ \frac{2^x}{\log_e 2} \right]_{\frac{1}{2}}^{2} - \left[ x \log_e x - x \right]_{\frac{1}{2}}^{2} \] Calculating \( \frac{2^x}{\log_e 2} \): - At \( x = 2 \): \( \frac{2^2}{\log_e 2} = \frac{4}{\log_e 2} \) - At \( x = \frac{1}{2} \): \( \frac{2^{\frac{1}{2}}}{\log_e 2} = \frac{\sqrt{2}}{\log_e 2} \) Thus, \[ \left[ \frac{2^x}{\log_e 2} \right]_{\frac{1}{2}}^{2} = \frac{4}{\log_e 2} - \frac{\sqrt{2}}{\log_e 2} = \frac{4 - \sqrt{2}}{\log_e 2} \] Calculating \( x \log_e x - x \): - At \( x = 2 \): \( 2 \log_e 2 - 2 \) - At \( x = \frac{1}{2} \): \( \frac{1}{2} \log_e \frac{1}{2} - \frac{1}{2} = -\frac{1}{2} \log_e 2 - \frac{1}{2} \) Thus, \[ \left[ x \log_e x - x \right]_{\frac{1}{2}}^{2} = (2 \log_e 2 - 2) - \left(-\frac{1}{2} \log_e 2 - \frac{1}{2}\right) \] \[ = 2 \log_e 2 - 2 + \frac{1}{2} \log_e 2 + \frac{1}{2} = \frac{5}{2} \log_e 2 - \frac{3}{2} \] ### Step 6: Combine the results Putting it all together: \[ A = \frac{4 - \sqrt{2}}{\log_e 2} - \left(\frac{5}{2} \log_e 2 - \frac{3}{2}\right) \] \[ = \frac{4 - \sqrt{2}}{\log_e 2} - \frac{5}{2} \log_e 2 + \frac{3}{2} \] ### Step 7: Compare with the given expression We have: \[ A = \alpha (\log_e 2)^{-1} + \beta \log_e 2 + \gamma \] From our calculations, we can identify \( \alpha, \beta, \gamma \) based on the coefficients. ### Final Calculation Finally, compute \( \alpha + \beta - 2\gamma \) and square it to find the answer.
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

The area of the region : R = {(x, y) : 5x^2 le y le 2x^2 + 9} is :

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Find the area of the region [x,y): x^2+y^2 le 1 le x+ y }

If 1/2 le log_(0.1) x le 2 , then

Find the area of region {(x,y):0leylex^(2)+1, 0 le y le x+ 1, 0 le x le 2} .

The area of the region {(x,y):x^(2)+y^(2) le 1 le x+y} , is

If log(x^(2) - 16) le log_(e) (4 x -11) , then

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-A)
  1. The value of the definite integral int(-(pi)/(4))^((pi)/(4)) (dx)/((1+...

    Text Solution

    |

  2. Let C be the set of all complex numbers. Let S(i) = {z in C||z-3-2i|^(...

    Text Solution

    |

  3. If the area of the bounded region R= {(x,y): "max" {0, log(e)x} le y l...

    Text Solution

    |

  4. A ray of light through (2,1) is reflected at a point P on the y-axis a...

    Text Solution

    |

  5. If the coefficients of x^(7) in (x^(2)+(1)/(bx))^(11) and x^(-7) in (x...

    Text Solution

    |

  6. The compound statement (P vv Q) ^^ (~P) rArr Q is equivalent to

    Text Solution

    |

  7. If sin theta+ cos theta= (1)/(2), then 16(sin (2theta)+ cos (4theta) +...

    Text Solution

    |

  8. Let A= [(1,2),(-1,4)]. If A^(-1)= alpha I +beta A, alpha, beta in R, I...

    Text Solution

    |

  9. Let f: (-(pi)/(4), (pi)/(4)) rarr R be defined as f(x)= {((1+|sin x|...

    Text Solution

    |

  10. Let y= y(x) be solution of the differential equation log(e)((dy)/(dx))...

    Text Solution

    |

  11. Let the plane passing through the point (-1,0,-2) and perpendicular to...

    Text Solution

    |

  12. Two tangents are drawn from the point P(-1,1) to the circle x^(2)+y^(2...

    Text Solution

    |

  13. Let f: R rarr R be a function such that f(2)=4 and f'(2)=1. Then, the ...

    Text Solution

    |

  14. Let P and Q be two distinct points on a circle which has center at C(2...

    Text Solution

    |

  15. Let alpha, beta be two roots of the equation x^(2)+(20)^(1//4)x+ (5)^(...

    Text Solution

    |

  16. The probability that a randomly selected 2-digit number belongs to the...

    Text Solution

    |

  17. Let A= {(x,y) in R xx R |2x^(2)+2y^(2)-2x-2y=1}, B= {(x,y) in R xx R|4...

    Text Solution

    |

  18. The point P (a,b) undergoes the following three transformations succes...

    Text Solution

    |

  19. A possible value of 'x', for which the ninth term in the expansion of ...

    Text Solution

    |

  20. For real numbers alpha and beta ne 0 , if the point of intersection o...

    Text Solution

    |