Home
Class 12
MATHS
If sin theta+ cos theta= (1)/(2), then 1...

If `sin theta+ cos theta= (1)/(2)`, then `16(sin (2theta)+ cos (4theta) + sin (6theta))` is equal to

A

23

B

`-27`

C

`-23`

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin \theta + \cos \theta = \frac{1}{2} \) and we need to find \( 16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta)) \), we can follow these steps: ### Step 1: Square the equation Start with the given equation: \[ \sin \theta + \cos \theta = \frac{1}{2} \] Square both sides: \[ (\sin \theta + \cos \theta)^2 = \left(\frac{1}{2}\right)^2 \] This expands to: \[ \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{1}{4} \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ 1 + 2\sin \theta \cos \theta = \frac{1}{4} \] ### Step 2: Solve for \( \sin(2\theta) \) Rearranging gives: \[ 2\sin \theta \cos \theta = \frac{1}{4} - 1 = -\frac{3}{4} \] Thus: \[ \sin(2\theta) = 2\sin \theta \cos \theta = -\frac{3}{4} \] ### Step 3: Find \( \cos(4\theta) \) Using the identity \( \cos(4\theta) = 1 - 2\sin^2(2\theta) \): \[ \sin^2(2\theta) = \left(-\frac{3}{4}\right)^2 = \frac{9}{16} \] So: \[ \cos(4\theta) = 1 - 2\left(\frac{9}{16}\right) = 1 - \frac{18}{16} = 1 - \frac{9}{8} = -\frac{1}{8} \] ### Step 4: Find \( \sin(6\theta) \) Using the identity \( \sin(6\theta) = 3\sin(2\theta) - 4\sin^3(2\theta) \): First, calculate \( \sin^3(2\theta) \): \[ \sin^3(2\theta) = \left(-\frac{3}{4}\right)^3 = -\frac{27}{64} \] Now substitute into the formula: \[ \sin(6\theta) = 3\left(-\frac{3}{4}\right) - 4\left(-\frac{27}{64}\right) \] Calculating gives: \[ \sin(6\theta) = -\frac{9}{4} + \frac{108}{64} = -\frac{9}{4} + \frac{27}{16} \] Converting \( -\frac{9}{4} \) to sixteenths: \[ -\frac{9}{4} = -\frac{36}{16} \] Thus: \[ \sin(6\theta) = -\frac{36}{16} + \frac{27}{16} = -\frac{9}{16} \] ### Step 5: Combine the results Now we can find \( 16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta)) \): \[ 16\left(-\frac{3}{4} - \frac{1}{8} - \frac{9}{16}\right) \] Finding a common denominator (16): \[ -\frac{3}{4} = -\frac{12}{16}, \quad -\frac{1}{8} = -\frac{2}{16}, \quad -\frac{9}{16} = -\frac{9}{16} \] Adding these: \[ -\frac{12}{16} - \frac{2}{16} - \frac{9}{16} = -\frac{23}{16} \] Thus: \[ 16\left(-\frac{23}{16}\right) = -23 \] ### Final Answer The value of \( 16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta)) \) is: \[ \boxed{-23} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

If 3sin theta =2 cos theta , then (4sin theta - cos theta)/(4cos theta+sin theta) is equal to :

If 16 cot theta = 12, then (sin theta + cos theta)/( sin theta - cos theta) is equal to

If 3 sin theta=2 cos theta , then 3 sin theta=2 cos theta , then (4 sin theta-cos theta)/(4 cos theta+sin theta) is equal to: यदि 3 sin theta=2 cos theta है, तो 3 sin theta=2 cos theta , then (4 sin theta-cos theta)/(4 cos theta+sin theta) का मान क्या होगा ?

If 2 sin theta=5 cos theta , then (sin theta+cos theta)/(sin theta-cos theta) is equal to: यदि 2 sin theta=5 cos theta है, तो (sin theta+cos theta)/(sin theta-cos theta) का मान किसके बराबर होगा ?

What is ( sin theta - cos theta + 1 )/( sin theta + cos theta -1) - ( sin theta + 1 )/( cos theta ) equal to ?

If sin theta cos theta = 1//2, then what is sin^6 theta +cos^6 theta equal to?

If cos theta =4/5 then sin^2 theta cos theta + cos^2 theta sin theta is equal to :

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-A)
  1. If the coefficients of x^(7) in (x^(2)+(1)/(bx))^(11) and x^(-7) in (x...

    Text Solution

    |

  2. The compound statement (P vv Q) ^^ (~P) rArr Q is equivalent to

    Text Solution

    |

  3. If sin theta+ cos theta= (1)/(2), then 16(sin (2theta)+ cos (4theta) +...

    Text Solution

    |

  4. Let A= [(1,2),(-1,4)]. If A^(-1)= alpha I +beta A, alpha, beta in R, I...

    Text Solution

    |

  5. Let f: (-(pi)/(4), (pi)/(4)) rarr R be defined as f(x)= {((1+|sin x|...

    Text Solution

    |

  6. Let y= y(x) be solution of the differential equation log(e)((dy)/(dx))...

    Text Solution

    |

  7. Let the plane passing through the point (-1,0,-2) and perpendicular to...

    Text Solution

    |

  8. Two tangents are drawn from the point P(-1,1) to the circle x^(2)+y^(2...

    Text Solution

    |

  9. Let f: R rarr R be a function such that f(2)=4 and f'(2)=1. Then, the ...

    Text Solution

    |

  10. Let P and Q be two distinct points on a circle which has center at C(2...

    Text Solution

    |

  11. Let alpha, beta be two roots of the equation x^(2)+(20)^(1//4)x+ (5)^(...

    Text Solution

    |

  12. The probability that a randomly selected 2-digit number belongs to the...

    Text Solution

    |

  13. Let A= {(x,y) in R xx R |2x^(2)+2y^(2)-2x-2y=1}, B= {(x,y) in R xx R|4...

    Text Solution

    |

  14. The point P (a,b) undergoes the following three transformations succes...

    Text Solution

    |

  15. A possible value of 'x', for which the ninth term in the expansion of ...

    Text Solution

    |

  16. For real numbers alpha and beta ne 0 , if the point of intersection o...

    Text Solution

    |

  17. Let f : R to R be defined as f (x + y) + f ( x - y) = 2 f (x)f (y)...

    Text Solution

    |

  18. Let CC be the set of all complex numbers . Let S(1) = { in CC : | z...

    Text Solution

    |

  19. A student appeared in an examination consisting of 8 true - false . Th...

    Text Solution

    |

  20. If tan ((pi)/(9)) , x ,tan ((7 pi)/( 18)) are in arithmetic progressio...

    Text Solution

    |