Home
Class 12
MATHS
Let A= {(x,y) in R xx R |2x^(2)+2y^(2)-2...

Let `A= {(x,y) in R xx R |2x^(2)+2y^(2)-2x-2y=1}, B= {(x,y) in R xx R|4x^(2)+4y^(2)-16y+7=0} and C={(x,y) in R xx R |x^(2)+y^(2)-4x-2y+5 le r^(2)}`. Then the minimum value of `|r|` such that `A uu B sube C` is equal to

A

`(3+sqrt10)/(2)`

B

`(2+sqrt10)/(2)`

C

`(3+2sqrt5)/(2)`

D

`1+sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the sets \( A \), \( B \), and \( C \) given in the question. ### Step 1: Analyze Set A The set \( A \) is defined by the equation: \[ 2x^2 + 2y^2 - 2x - 2y = 1 \] Dividing the entire equation by 2, we get: \[ x^2 + y^2 - x - y = \frac{1}{2} \] Rearranging this, we can complete the square: \[ (x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1 \] Thus, set \( A \) represents a circle centered at \( \left(\frac{1}{2}, \frac{1}{2}\right) \) with a radius of \( 1 \). ### Step 2: Analyze Set B The set \( B \) is defined by the equation: \[ 4x^2 + 4y^2 - 16y + 7 = 0 \] Rearranging gives: \[ 4x^2 + 4y^2 - 16y = -7 \] Dividing by 4: \[ x^2 + y^2 - 4y = -\frac{7}{4} \] Completing the square for \( y \): \[ x^2 + (y - 2)^2 = 4 - \frac{7}{4} = \frac{16}{4} - \frac{7}{4} = \frac{9}{4} \] Thus, set \( B \) represents a circle centered at \( (0, 2) \) with a radius of \( \frac{3}{2} \). ### Step 3: Analyze Set C The set \( C \) is defined by the inequality: \[ x^2 + y^2 - 4x - 2y + 5 \leq r^2 \] Rearranging gives: \[ (x^2 - 4x) + (y^2 - 2y) \leq r^2 - 5 \] Completing the square: \[ (x - 2)^2 + (y - 1)^2 \leq r^2 - 5 + 4 + 1 \] This simplifies to: \[ (x - 2)^2 + (y - 1)^2 \leq r^2 \] Thus, set \( C \) represents a circle centered at \( (2, 1) \) with radius \( r \). ### Step 4: Determine Minimum Value of \( |r| \) To ensure that \( A \cup B \subseteq C \), we need to find the minimum value of \( r \) such that both circles \( A \) and \( B \) lie completely within circle \( C \). 1. **Distance from center of \( A \) to center of \( C \)**: \[ d(A, C) = \sqrt{(2 - \frac{1}{2})^2 + (1 - \frac{1}{2})^2} = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{1}{4}} = \sqrt{\frac{10}{4}} = \frac{\sqrt{10}}{2} \] The radius of circle \( A \) is \( 1 \). Therefore, for \( A \) to be inside \( C \): \[ r \geq d(A, C) + 1 = \frac{\sqrt{10}}{2} + 1 \] 2. **Distance from center of \( B \) to center of \( C \)**: \[ d(B, C) = \sqrt{(2 - 0)^2 + (1 - 2)^2} = \sqrt{2^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5} \] The radius of circle \( B \) is \( \frac{3}{2} \). Therefore, for \( B \) to be inside \( C \): \[ r \geq d(B, C) + \frac{3}{2} = \sqrt{5} + \frac{3}{2} \] ### Step 5: Compare the Values We need to find the maximum of the two conditions: 1. \( r \geq \frac{\sqrt{10}}{2} + 1 \) 2. \( r \geq \sqrt{5} + \frac{3}{2} \) Calculating these values: - \( \frac{\sqrt{10}}{2} + 1 \approx 1.58 + 1 = 2.58 \) - \( \sqrt{5} + \frac{3}{2} \approx 2.24 + 1.5 = 3.74 \) Thus, the minimum value of \( |r| \) such that \( A \cup B \subseteq C \) is: \[ \boxed{3.74} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

Let A ={(x,y) in R xx R: y = 5^(x) + 12^(x)} B = {(x,y) in R xx R , y = 13^(x)} Then

Let A = {(x,y) in R xx R : y = 5^(x) + 3^(x)} B = {(x,y) in R xx R : y = 4^(x)} , Then

R={x,y):x,y in R,x^(2)+y^(2) =((4)/(9))x^(2)} then

If R={(x,y): x,y in W, x ^(2)+y^(2)=25} , then find the domain and range or R.

if A={(x,y):x^(2)+y^(2)=4,x,y in R } and B={(x,y): x^(2)+y^(2)= 9,x,yin R} ,then

Let R={x,y):x,y in R,x^(2)+y^(2) =(4)/(9)x^(2)} find the domain and range of R nn R'

if A={(x,y):x^(2)+y^(2)le1,x,yinR] and B={(x,y):x^(2)+y^(2)le x^(2)+y^(2)le 4, x,yin R] then

if A={(x,y):x^(2)+y^(2)=4, x,y in R }and B={(x,y):Y=|x|, x , y in R } then

JEE MAINS PREVIOUS YEAR-JEE MAINS 2021-MATHEMATICS (SECTION-A)
  1. Let alpha, beta be two roots of the equation x^(2)+(20)^(1//4)x+ (5)^(...

    Text Solution

    |

  2. The probability that a randomly selected 2-digit number belongs to the...

    Text Solution

    |

  3. Let A= {(x,y) in R xx R |2x^(2)+2y^(2)-2x-2y=1}, B= {(x,y) in R xx R|4...

    Text Solution

    |

  4. The point P (a,b) undergoes the following three transformations succes...

    Text Solution

    |

  5. A possible value of 'x', for which the ninth term in the expansion of ...

    Text Solution

    |

  6. For real numbers alpha and beta ne 0 , if the point of intersection o...

    Text Solution

    |

  7. Let f : R to R be defined as f (x + y) + f ( x - y) = 2 f (x)f (y)...

    Text Solution

    |

  8. Let CC be the set of all complex numbers . Let S(1) = { in CC : | z...

    Text Solution

    |

  9. A student appeared in an examination consisting of 8 true - false . Th...

    Text Solution

    |

  10. If tan ((pi)/(9)) , x ,tan ((7 pi)/( 18)) are in arithmetic progressio...

    Text Solution

    |

  11. Let the mean and variance of the frequency distribution {:(x:,x(1)=2...

    Text Solution

    |

  12. The area of the region bounded by y – x = 2 and x^(2) = y is equal to

    Text Solution

    |

  13. Let y = y (x) be the solution of the differential equation ( x - x ^(...

    Text Solution

    |

  14. The value of lim( x to 0) (( x)/( 8 sqrt( 1 - sin x) - 8 sqrt( 1 + si...

    Text Solution

    |

  15. Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + ...

    Text Solution

    |

  16. Let alpha = max(x sub R) { 8^(2 sin 3 x) * 4^( 4 cos 3 x)} and beta =...

    Text Solution

    |

  17. Let f : [ 0, oo) to [ 0,3] be a function defined by f(x) = {{:(max {...

    Text Solution

    |

  18. Let N be the set of natural numbers and a relation R on N be defined b...

    Text Solution

    |

  19. Which of the following is the negation of the statement "for all M g...

    Text Solution

    |

  20. Consider a circle C which touches the y-axis at (0,6) and cuts off an ...

    Text Solution

    |