Home
Class 12
PHYSICS
Consider the vectors vec(A)=hat(i)+hat(j...

Consider the vectors `vec(A)=hat(i)+hat(j)-hat(k),vec(B)=2hat(i)-hat(j)+hat(k),vec(C)=(1)/(sqrt(5))(hat(i)-2hat(j)+2hat(k))`. What is the value of `vec(C).(vec(A)xxvec(B))` ?

A

1

B

0

C

`3sqrt(2)`

D

`18sqrt(5)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2020

    WB JEE PREVIOUS YEAR PAPER|Exercise PHYSICS (CATEGORY-II)|1 Videos
  • QUESTION PAPER 2020

    WB JEE PREVIOUS YEAR PAPER|Exercise PHYSICS (CATEGORY-III)|3 Videos
  • QUESTION PAPER 2007

    WB JEE PREVIOUS YEAR PAPER|Exercise PHYSICS|50 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

If vec(a) = hat (i) +hat (j) , vec (b) = hat(i) - hat(j) and vec(c ) = 5 hat (i) + 2 hat (j) + 3 hat(k) , find the value of [ vec(b)vec (c ) vec(a)]

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a). (vec(b)+vec(c)) = vec (a).vec(b) + vec (a).vec(c )

If vec(a)=hat(i)+hat(j)+hat(k), vec(b)=2hat(i)-hat(j)+3hat(k) " and " vec(c)=hat(i)-2hat(j)+hat(k) find a unit vector in a direction parallel to vector (2vec(a)-vec(b)+3vec(c)) .

If vec(a)=2hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)+3hat(j)+6hat(k) " and " vec(c)=-hat(i)+2hat(k) , then find the magnitude and direction of the vector vec(a)-vec(b)+2vec(c) .

If vec(a) = hat (i) + hat (j) - hat (k) , vec (b) = 2 hat (i) - 2 hat (j) + hat (k) and vec(c ) = 3 hat (i) + 2 hat (j) - 2 hat (k) show that , vec (a) xx ( vec(b)+vec(c)) = vec (a) xx vec (b) + vec(a) xx vec(c)

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

The lines vec(r)=hat(i)+t(5hat(i)+2hat(j)+hat(k)) and vec(r)=hat(i)+s(-10hat(i)-4hat(j)-2hat(k)) are -

Let vec(a)=4hat(i)+3hat(j)-hat(k), vec(b)=5hat(i)+2hat(j)+2hat(k), vec(c)=2hat(i)-2hat(j)-3hat(k) " and "vec(d)=4hat(i)-4hat(j)+3hat(k), " prove that " vec(b)-vec(a) " and " vec(d)-vec(c) are parallel and find the ratio of their moduli.