Home
Class 12
MATHS
Prove that sin^-1 (-(sqrt3)/(2)) = - (pi...

Prove that `sin^-1 (-(sqrt3)/(2)) = - (pi/3)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : cosec[tan^-1(-sqrt3)] = -2/sqrt3

Prove that : sin^-1 (-4/5) = cos^-1 (-3/5) - pi

Prove that cos(sin^-1(3/5) + cot^-1(3/2)) = 6/(5sqrt13)

Prove that : sin^-1 x + sin^-1 2x = pi/3

Prove that "sin"^(2)(pi)/(6)+"cos"^(2)(pi)/(3)-"tan"^(2)(pi)/(4)=(-1)/(2)

Prove that 2sin^2(pi/2) + cos^2(pi/3) + tan ^2(pi/4) = 13/4

Prove that 2sin^2(pi/6) - sec^2(pi/3)= -7/2

Find x if sin^-1 (6x) + sin^-1 (6sqrt3x) = - pi/2

Prove that : cot^-1 3 + cosec^-1 sqrt5 = pi/4

Prove that sin^(-1)""(3)/(5)+sin^(-1)""(4)/(5)=(pi)/(2)