Home
Class 12
MATHS
Prove that : 2 sin^-1 x = sin^-1 (2x s...

Prove that :
`2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^-1 x + sin^-1 2x = pi/3

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that following : 2 sin^-1 x = cos^-1 (1-2x^2), 0 le x le 1

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

int (x(sin^-1x))/(sqrt(1-x^2))dx

Prove that : 1/2 tan^-1x = cos^-1{(1+sqrt(1+x^2))/(2sqrt(1+x^2))}^(1/2)

Prove that following : cos^-1 x = 2 sin^-1 sqrt(1-x)/(2) = 2cos^-1 sqrt(1+x)/(2), |x| le 1

Find dy/dx if y = sin^-1x + sin^-1 sqrt(1-x^2) , 0ltxlt1

Show that : sin^-1(2xsqrt(1-x^2)) = 2 sin^-1 x, -1/sqrt2lexle1/sqrt2