Home
Class 12
MATHS
Prove that : sin^-1 x + sin^-1 2x = pi...

Prove that :
`sin^-1 x + sin^-1 2x = pi/3`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Solve : sin^-1(5/x) + sin^-1(12/x) = pi/2

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Statement I sin^(-1) 2x + sin^(-1) 3x = pi/3 rArr x = sqrt(3/76) only. and Statement II Sum of two negative angles cannot be positive.

Solve the following equations: sin^-1(1-x) - 2 sin^-1 x = pi/2

Prove that: sin 3x + sin 2x -sin x = 4sin x cosfrac(x)(2)cosfrac(3x)(2)

Prove that cos^-1x = pi/2 - sin^-1 x for -1lexle1 and use this result to find d/dx(cos^-1x)

Solve the following sin^(-1) x + sin^(-1) 2 x = ( 2pi)/3

Prove that : sin^-1 (-4/5) = cos^-1 (-3/5) - pi

Prove that: (sin 3x + sin x) sin x + (cos 3x -cos x) cos x = 0