Home
Class 12
MATHS
If cos^(-1) x + cos^(-1) y + cos^(-1) z...

If ` cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1`.

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

If y = cos(2 cos^(-1)x) , then prove that (1 - x^2)(d^2y)/(dx) -xdy/dx + 4y = 0

If y= (cos^-1 x)^2 , prove that: (1 - x^2 ) ((d^2y)/dx^2) - x(dy/dx) -2 = 0 .

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

If y = "cos"^(-1) ((3 + 5 cos x)/(5 + 3 cos x)) , prove that cos x = 2 tan^(-1) (1/2 tan (x/2) )

Prove that cos4x = 2cos^2(2x) - 1