Home
Class 12
MATHS
Prove that tan^-1(x/(sqrt(a^2 - x^2)) = ...

Prove that `tan^-1(x/(sqrt(a^2 - x^2)) = sin^-1 (x/a), |x| < a.

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Differentiate tan^-1 (x/(sqrt(1-x^2))) w.r.t. sin^-1 x .

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

Prove that tan2x=(2tanx)/(1-tan^2 x)

Prove that tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x .

Prove that derivative of tan^-1(x/(1+sqrt(1-x^2))) w.r.t sin^-1 x is independent of x.

Prove that : tan^-1 x +tan^-1 2x/(1-x^2) = tan^-1 ((3x-x^3)/(1-3x^2)), |x| < 1/sqrt3

Prove that tan^-1 sqrtx = sin^-1 sqrt(x/1+x) = 1/2cos^-1 ((1-x)/(1+x)), x ge 0