Home
Class 12
MATHS
Prove that tan^-1((sqrt1+X^2) + 1)/x) = ...

Prove that `tan^-1((sqrt1+X^2) + 1)/x) = pi/2 - 1/2 tan^-1 x`.

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Prove that tan^-1(x/(sqrt(a^2 - x^2)) = sin^-1 (x/a), |x| < a.

Prove that tan^(-1)((sqrt(1-x^(2)))/(1+x))=(1)/(2)cos^(-1)x

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that tan(sec^-1 x) = sqrt(x^2 - 1) for x le 1

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)

Prove that derivative of tan^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t. tan^(-1) x is independent of x.