Home
Class 12
MATHS
Prove that 2 tan^-1 sqrt((1- x)/(1+x))= ...

Prove that `2 tan^-1 sqrt((1- x)/(1+x))= x, -1 le x le 1`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that cos(2 tan^-1 (sqrt((1-x)/(1+x)))) = x, - 1 < x le 1

Express the following functions in the simplest form : tan^-1 (sqrt((1-x)/(1+x))) , - 1 < x le 1

Differentiate the following functions w.r.t.x L sin(2 tan^-1sqrt((1-x)/(1+x))), - 1 le x < 1

Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x)), 0 le x le 1

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Prove that sin(2 tan^-1(sqrt((1+x)/(1-x))) = sqrt(1-x^2) , - le x < 1

Prove that tan(sec^-1 x) = sqrt(x^2 - 1) for x le 1

Prove that tan^-1 (x+sqrtx)/(1-xsqrtx) = tan^-1 x + tan^-1 sqrtx, 0 le x < 1

Show that 2 tan^-1 x = cosec^-1((1+x^2)/(2x)), 0 < |x| le 1

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1