Home
Class 12
MATHS
Show that sec^-1 (1/(2x^2-1)) = 2 cos^-1...

Show that `sec^-1 (1/(2x^2-1)) = 2 cos^-1 x, 0 le x le 1, x ne = 1/2`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Show that 2 tan^-1 x = cosec^-1((1+x^2)/(2x)), 0 < |x| le 1

Prove that 2 tan^-1 sqrt((1- x)/(1+x))= x, -1 le x le 1

Prove that following : 2 sin^-1 x = cos^-1 (1-2x^2), 0 le x le 1

Prove that tan(sec^-1 x) = sqrt(x^2 - 1) for x le 1

sin (sin^-1 x + cos^-1 x) is equal to (-1 le x le 1)

Prove that : tan^-1((2xsqrt(1-x^2))/(1-2x^2)) = 2 sin^-1 x when: 1/sqrt2 le x le 1/sqrt2

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

If alpha le 2 sin^-1 x + cos^-1 x le beta , then

Prove that cos(2 tan^-1 (sqrt((1-x)/(1+x)))) = x, - 1 < x le 1

Write the following functions in the simplest form: cos^-1 (2x^2 - 1), 0 le x le 1