Home
Class 12
MATHS
If cot^-1 x = tan^-1(1/x) for all x in S...

If `cot^-1 x = tan^-1(1/x)` for all x `in` S, then find the set S.

A

`x ne 0`

B

x lt 0

C

`|x| le 1`

D

x gt 0

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

If cosec^-1 x = sin^-1 (1/x) for all x in S , then find the set S.

If sec (1/x) = cos^-1 x for all x in A, then find the set A.

Prove that cot^-1x = pi/2 - tan^-1x and use this to find the derivative of cot^-1 x .

If tan^-1((x-1)/(x-2)) + tan((x+1)/(x+2)) = pi/4 , then find the value of 'x'.

Fill in the blanks: The value of cot^-1 (-x) , for all x in R , in terms of cot^-1 x is……….

If tan^-1 ((x-1)/(x-2))+tan^-1((x+1)/(x+2))=pi/4, then find the value of x

If tan^-1 x = pi/10 for some x in R, them the value of cot^-1 x is

cot^-1(-x) = pi - cot^-1x , x in R

Prove that tan(cot^-1x) = cot(tan^-1x) . State with reason whether the equality is valid for all values of x.