Home
Class 12
MATHS
If cos(sin^-1 (2/5) + cos^-1 x) = 0, the...

If `cos(sin^-1 (2/5) + cos^-1 x) = 0`, then x is equal to

A

`1/5`

B

`2/5`

C

0

D

1

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

If sin (sin^(-1) (1/5) +cos^(-1) X) = 1 then x is equal to :

Find x if cos(sin^-1 (1/5) + os^-1 x) = 0

If 'sin(sin^-1(1/5) + cos^-1x)=1 , then find the value of 'x'

If sin^-1 (1/5) + cos^-1(x) = pi/2 , then value of x equals :

If sin(sin^–1(1/5) + cos^–1x) =1, then find the value of x.

If cos(sin^(-1)""(2)/(3)+cos^(-1)x)=0 , then find the value of x.

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

If sin^-1 (x) + cos^-1(1/4) = pi/2 , then value of x equals :

The value of cos (sin^-1 x + cos^-1 x) is equal to :

sin (sin^-1 x + cos^-1 x) is equal to (-1 le x le 1)