Home
Class 12
MATHS
If tan^-1 x + tan^-1 y = (4pi)/5, then c...

If `tan^-1 x + tan^-1 y = (4pi)/5`, then `cot^-1 x + cot^-1 y` equals

A

`pi`

B

`pi/5`

C

`(2pi)/5`

D

`(3pi)/5`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

If tan^-1 x = y , then

If 3 tan^-1 x + cot^-1 x = pi , then x equals

If tan^-1 x + tan^-1y = pi/4, xy < 1, then write the value of x +y + xy.

tan^-1 x - tan^-1 y= tan^-1 (frac{x-y}{1+xy} .

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

tan^-1 x + tan^-1y= tan^-1 (frac{x+y}{1-xy} ).