Home
Class 12
MATHS
If |x| le 1, then 2 tan^-1 x + sin^-1 ((...

If `|x| le 1`, then `2 tan^-1 x + sin^-1 ((2x)/(1+x^2))` is equal to

A

0

B

`pi/2`

C

`pi`

D

`4 tan^-1 x`.

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Fill in the blanks: If y = 2 tan^-1 x + sin^-1 ((2x)/(1+x^2)) for all x, then ………… le y le …….

sin(tan^-1x), |x|<1 is equal to :

If x in R , find the maximum and minimum values of 2 tan^-1 x + sin^-1 ((2x)/(1+x^2))

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

Show that 2 tan^-1 x = cosec^-1((1+x^2)/(2x)), 0 < |x| le 1

sin (sin^-1 x + cos^-1 x) is equal to (-1 le x le 1)

Fill in the blanks: For x in R, tan^-1 (x^2 +1) + cot^-1 (x^2 +1) is equal to ……………..