Home
Class 12
MATHS
sin^-1 (cosx) = pi/2 - x is valid for...

`sin^-1 (cosx) = pi/2 - x` is valid for

A

`- pi le x le 0`

B

`0 le x le pi`

C

`- pi/2 le x le pi/2`

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos
  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • LINEAR PROGRAMMING

    PRADEEP PUBLICATION|Exercise EXERCISE|135 Videos

Similar Questions

Explore conceptually related problems

If sin^-1(1-x) - 2sin^-1x = pi/2 , then x is equal to :

2 cos^-1 x = sin^-1(2xsqrt(1-x^2)) is valid for all value of x satisfying:

If sin^-1 x + sin^-1y = pi/2 , then value of cos^-1 x + cos^-1 y

Find d/(dx)(cos^-1 (cosx)) when pi le x le 2pi

Differntiate the following functions w.r.t.x tan^-1((1-cosx)/(sinx)), - pi/2 < x < pi/2

The number of real solution of the equation sqrt(1 + cos 2x) = sqrt2 sin^(-1) (sin x), -pi le x le pi , is

Express the following functions in the simplest form : tan^-1 (a cosx - b sin x)/(b cos x + a sin x ), - pi/2 -1

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)