Home
Class 12
MATHS
Value of |{:(1,omega,omega^(2)),(omega,o...

Value of `|{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega):}|` is zero, where `omega,omega^(2)` are imaginary cube roots of unity.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos

Similar Questions

Explore conceptually related problems

Sum the series : 1(2-omega)(2-omega^(2))+2(3-omega)(3-omega^(2))......(n-1)(n-omega)(n-omega^(2)) where omega and omega^(2) are non-real cube roots of unity.

If omega = (-1+sqrt3i)/2 , find the value of |(1, omega, omega^2),(omega, omega^2, 1),(omega^2, 1 , omega)|

Show that a=r omega^(2) .

If omega^(3)=1 and omega ne1 , then (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5)) is equal to

If 1,alpha_1,alpha_2,alpha_3,alpha_4 be the roots x^5-1=0 , then value of [omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4] is (where omega is imaginary cube root of unity)

If omega!=1 is a complex cube root of unity, then prove that [{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(2017)),(omega^(2017),omega^(2018),2+2omega^(2017)+omega^(2018)):}] is singular

If x, y, z are not all zero & if ax + by + cz=0, bx+ cy + az=0 & cx + ay + bz = 0 , then prove that x: y : z = 1 : 1 : 1 OR 1 :omega:omega^2 OR 1:omega^2:omega , where omega is one ofthe complex cube root of unity.

If omega ne 1 and omega^3=1 , then : (a omega+b+c omega^2)/(a omega^2+b omega+c) + (a omega^2+b+c omega)/(a+b omega+c omega^2) is equal to :

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

If 1,omega,omega^(2),...omega^(n-1) are n, nth roots of unity, find the value of (9-omega)(9-omega^(2))...(9-omega^(n-1)).

PRADEEP PUBLICATION-DETERMINANTS-EXERCISE
  1. Value of |{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega...

    Text Solution

    |

  2. If A = [(13,-10),(7,87)], write the following submatrices of A. A12

    Text Solution

    |

  3. If A = [(13,-10),(7,87)], write the following submatrices of A. A22

    Text Solution

    |

  4. If A = [(a,h,g),(h,b,f),(g,f,c)], find the submatrix of A obtained by ...

    Text Solution

    |

  5. If A = [(a,h,g),(h,b,f),(g,f,c)], find the submatrix of A obtained by ...

    Text Solution

    |

  6. If A = [(a,h,g),(h,b,f),(g,f,c)], find the submatrix of A obtained by ...

    Text Solution

    |

  7. If A = [(a,h,g),(h,b,f),(g,f,c)], find the submatrix of A obtained by ...

    Text Solution

    |

  8. Find the minors and cofactos of each entry of the first column of the ...

    Text Solution

    |

  9. Find the minors and cofactos of each entry of the first column of the ...

    Text Solution

    |

  10. Find the minors and cofactos of each entry of the first column of the ...

    Text Solution

    |

  11. Find the minors and cofactos of each entry of the first column of the ...

    Text Solution

    |

  12. Evaluate the following determinants: {:|(-2,3),(4,-9)|

    Text Solution

    |

  13. Evalate the following determinants: |(1//2, 8),(4,2)|

    Text Solution

    |

  14. Evaluate the following determinants: |(a+ib , - c + id),(c+id, a-ib)...

    Text Solution

    |

  15. Evaluate the following determinants: |(3x, x-7),(x+1,5x+1)|

    Text Solution

    |

  16. Show that |(sin10^@, - cos10^@),(sin80^@, cos80^@)| = 1

    Text Solution

    |

  17. Show that {:|(cos15^@, sin15^@),(sin75^@, cos75^@)|:}= 0

    Text Solution

    |

  18. Evaluate |(x,x+1),(x-1,x)|

    Text Solution

    |

  19. Evaluate the following determinants: |(1,0,0),(0,1,0),(0,0,1)|

    Text Solution

    |

  20. Evaluate the following determinants: |(1,-3,3),(4,-1,3),(3,5,3)|

    Text Solution

    |

  21. Evaluate the following determinants: |(1,0,2),(0,2,1),(2,0,3)|

    Text Solution

    |