Home
Class 12
MATHS
Evaluate the determinants in exercises 1...

Evaluate the determinants in exercises 1 to 2.
`|(cos theta, - sin theta),(sintheta, cos theta)]`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin 2 theta= 2sin theta cos theta .

Verify that [(cos theta, sin theta),(-sin theta, cos theta)] and [(cos theta, - sin theta),(sin theta, cos theta)] are inverse of each other.

Find the adjoint of each of the following matrices: [(cos theta, sin theta),(-sin theta, cos theta)]

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Find the inverse of each of the folowing matrices: [(cos theta, sin theta),(-sintheta, costheta)]

sin^2theta+cos^2theta=1 .

Let A = [ (cos theta, sin theta),(- sin theta, cos theta)] , then show that A ^(2) = [(cos 2 theta, sin 2 theta),( - sin 2 theta, cos 2 theta)]

If A = [(sintheta ,- costheta), (costheta, sintheta)] and B = [(costheta , sin theta),(-sintheta, cos theta)] . Compute (sin theta) A + (cos theta) B.

PRADEEP PUBLICATION-DETERMINANTS-EXERCISE
  1. For what value of 'k', the system of linear equations : x+y+z=2,2x+y...

    Text Solution

    |

  2. Evaluate the determinants in exercises 1 to 2. |(2,4),(-5,-1)|

    Text Solution

    |

  3. Evaluate the determinants in exercises 1 to 2. |(cos theta, - sin th...

    Text Solution

    |

  4. Evaluate the following determinants: {:|(x^2-x+1,x-1),(x+1,x+1)|

    Text Solution

    |

  5. If A =[{:(1,2),(4,2):}], then show that | 2A| = 4|A|.

    Text Solution

    |

  6. If A = [[1,0,1],[0,1,2],[0,0,4]] then show that |3A| = 27|A|

    Text Solution

    |

  7. Evaluate the following determinants: {:|(3,-1,-2),(0,0,-1),(3,-5,0)|

    Text Solution

    |

  8. Evaluate the determinant : |[3,-4,5],[1,1,-2],[2,3,1]|

    Text Solution

    |

  9. Evaluate the determinant : |[0,1,2],[-1,0,-3],[-2,3,0]|

    Text Solution

    |

  10. Evaluate the determinant Delta = abs{:(2,-1,-2),(0,2,-1),(3,-5,0):}.

    Text Solution

    |

  11. If A = [{:(1,1,-2),(2,1,-3),(5,3,-9):}], find |A|.

    Text Solution

    |

  12. Find values of x, if : |[2,4],[5,1]| = |[2x,4],[6,x]|

    Text Solution

    |

  13. Find the value of x, if |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|.

    Text Solution

    |

  14. If |[x,2],[18,x]| = |[6,2],[18,6]|, then x is equal to:

    Text Solution

    |

  15. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  16. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  17. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  18. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  19. Using the property of determinants and without expanding prove that : ...

    Text Solution

    |

  20. By using properties of determinants, Show that : {:|(0,a,-b),(-a,0,-...

    Text Solution

    |