Home
Class 12
MATHS
If A =[{:(1,2),(4,2):}], then show that ...

If `A =[{:(1,2),(4,2):}]`, then show that `| 2A| = 4|A|`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos

Similar Questions

Explore conceptually related problems

If A = [[1,2],[4,2]] , then show that |2A| = 4|A|

If A = {:[(1,2,3),(3,-2,1),(4,2,1)] , then show that : A^2 - 23 A - 40 I ne O

If A = [(2, -2),(-3,1)] , then show that ( A + I) ( A - 4 I) = O

If A = [(2,3),(-1,2)] , then show that A^2- 4 A + 7 I = O . Hence, evaluate A^5.

If A= |(-1,6,-2),(2,1,1),(4,1,-3)| show that |2A|= 8|A|

If A= [[4,1,1],[1,4,1],[1,1,4]] , then show that |2A| = 8 |A| .

If A= [[2,1,1],[1,2,1],[1,1,2]] , then show that |4A| = 64 |A| .

If A = {:[(1,2),(4,2)} , then find the value of 'k' if |2A| = k|A|.

If A = [[1,2,3],[3,-2,1],[4,2,1]] , then show that A^3 - 23A - 40I = O

Let A = {:[(2,3),(-1,2)] . Then show that A^2 - 4A + 7I = O .

PRADEEP PUBLICATION-DETERMINANTS-EXERCISE
  1. Evaluate the determinants in exercises 1 to 2. |(cos theta, - sin th...

    Text Solution

    |

  2. Evaluate the following determinants: {:|(x^2-x+1,x-1),(x+1,x+1)|

    Text Solution

    |

  3. If A =[{:(1,2),(4,2):}], then show that | 2A| = 4|A|.

    Text Solution

    |

  4. If A = [[1,0,1],[0,1,2],[0,0,4]] then show that |3A| = 27|A|

    Text Solution

    |

  5. Evaluate the following determinants: {:|(3,-1,-2),(0,0,-1),(3,-5,0)|

    Text Solution

    |

  6. Evaluate the determinant : |[3,-4,5],[1,1,-2],[2,3,1]|

    Text Solution

    |

  7. Evaluate the determinant : |[0,1,2],[-1,0,-3],[-2,3,0]|

    Text Solution

    |

  8. Evaluate the determinant Delta = abs{:(2,-1,-2),(0,2,-1),(3,-5,0):}.

    Text Solution

    |

  9. If A = [{:(1,1,-2),(2,1,-3),(5,3,-9):}], find |A|.

    Text Solution

    |

  10. Find values of x, if : |[2,4],[5,1]| = |[2x,4],[6,x]|

    Text Solution

    |

  11. Find the value of x, if |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|.

    Text Solution

    |

  12. If |[x,2],[18,x]| = |[6,2],[18,6]|, then x is equal to:

    Text Solution

    |

  13. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  14. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  15. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  16. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  17. Using the property of determinants and without expanding prove that : ...

    Text Solution

    |

  18. By using properties of determinants, Show that : {:|(0,a,-b),(-a,0,-...

    Text Solution

    |

  19. Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

    Text Solution

    |

  20. By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2]...

    Text Solution

    |