Home
Class 12
MATHS
If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqr...

If `y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) `, show that `(dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • APPLICATIONS OF INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|162 Videos
  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos

Similar Questions

Explore conceptually related problems

If xsqrt(1 + y) + ysqrt(1 + x) = 0 show that (dy)/(dx) = - 1/(1 + x)^2

If y = (x sin^(-1) x)/(sqrt(1 - x^2)) + "log" sqrt(1 - x^2) , prove that (dy)/(dx) = (sin^(-1)x)/((1 - x^2)^(3//2))

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))

int (2x)/sqrt(1-x^2-x^4) dx=

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

If sqrt(1 - x^6) + sqrt(1 - y^6) = a^3 (x^3 - y^3) prove that (dy)/(dx) = (x^2 sqrt(1 - y^6))/(y^2 sqrt(1 - x^6))

If y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1-x^2))] find dy/dx

If y = sqrt(x+ sqrt(x + sqrt(x + ......oo))) , show that (2y - 1) (dy)/(dx) = 1

If log (sqrt(1 + x^2) - x) = y sqrt(1 + x^2) , show that (1 - x^2) (dy)/(dx) + xy + 1 = 0

If ysqrt(1-x^2)+xsqrt(1-y^2)=1 , then prove that dy/dx=- sqrt((1-y^2)/(1-x^2))