Home
Class 12
MATHS
If y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1...

If `y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1-x^2))]` find `dy/dx`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • APPLICATIONS OF INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|162 Videos
  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos

Similar Questions

Explore conceptually related problems

Evaluate: underset(0)overset(1)intsin^-1(xsqrt(1-x)-sqrt(x)sqrt(1-x^2))dx

If y = sqrt(cot^-1sqrtx) , find dy/dx

If y = (sin^-1x)/(sqrt(1-x^2)) , prove that (1-x^2)(dy/dx)- xy = 1

If y = (x sin^(-1) x)/(sqrt(1 - x^2)) + "log" sqrt(1 - x^2) , prove that (dy)/(dx) = (sin^(-1)x)/((1 - x^2)^(3//2))

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))

IF [y{sqrt(x^2 + 1)- log {1/x +sqrt(1+1/x^2)}] find dy/dx

If y= (sqrt(x) + 1/sqrt(x))^2 .Find dy/(dx)

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

Find dy/dx when y = sin^-1 (1/(sqrt(1+x^2))) + tan^-1 (sqrt(1+x^2)-1)/(x)), x > 0