Home
Class 12
MATHS
If y = x^(x^(x….. To infty), prove that ...

If `y = x^(x^(x….. To infty)`, prove that `dy/dx = y^2/(x(1-ylogx))`.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • APPLICATIONS OF INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|162 Videos
  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos

Similar Questions

Explore conceptually related problems

If y = (x^(x^(x)….......to oo)) , prove that xdy/dx=y^2/(1-ylogx) .

If y = (sqrtx)^(sqrtx^(sqrtx))......... to infty) , prove that dy/dx = y^2/(x(2-ylogx))

If y = x^y , prove that (dy)/(dx) = (y^2)/(x(1 - y log x))

Differentiate the following w.r.t.x. y = x^(x^(x^( oo))) , prove that x (dy)/(dx) = (y^2)/(1 - y log x)

If y = (cosx)^(cosx^(cosx……..to infty)) prove that dy/dx = (-y^2 tanx)/(1-y log cos x)

If y = x sin y, prove that x dy/dx = y/(1-x cosy)

If x=e^(x//y), prove that (dy)/(dx) = (x-y)/(xlogx)

If y = x^(x^x) prove that dy/dx = x^(x+x^x) [1/x+(1+logx)logx]

If e^x + e^y = e^(x+y) , prove that dy/dx = -e^(y-x)