Home
Class 12
MATHS
If f and g are differentiable functions ...

If f and g are differentiable functions for `0 le x le 1` such that `f(0) = 2, g(0), f (1) = 6, g (1) = 2`, then show that there exists c satisying 0 < c < 1 and f' (c ) = 2g' ( c)

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • APPLICATIONS OF INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|162 Videos
  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos

Similar Questions

Explore conceptually related problems

If f and g are differentiable functions in [0, 1] satisfying f(0)""=""2""=g(1),g(0)""=""0 and f(1)""=""6 , then for some c in [0,""1] (1) 2f^'(c)""=g^'(c) (2) 2f^'(c)""=""3g^'(c) (3) f^'(c)""=g^'(c) (4) f'(c)""=""2g'(c)

Let f(x)a n dg(x) be differentiable for 0lt=xlt=2 such that f(0)=2,g(0)=1,a n df(2)=8. Let there exist a real number c in [0,2] such that f^(prime)(c)=3g^(prime)(c)dot Then find the value of g(2)dot

Let f: (-1,1) rarr R be a differentiable function with f(0) = -1 and f'(0) = 1 let g(x) =[f(2f(x)+2)]^2 , then g'(0) =

Find a quadratic function defined by the equation: f(x) = ax^2 + bx + c if f(0) = f(-1) = 0 and f(1)=2

If f and g are continuous functions in [0, 1] satisfying f(x) = f(a-x) and g(x) + g(a-x) = a , then int_(0)^(a)f(x)* g(x)dx is equal to

Let F (x) = (f (x ))^(2) + (f' (x ))^(2), F (0) =6, whtere f (x) is a thrice differentiable function such that |f (x) || le 1 AA x in [-1, 1], then choose the correct statement (s)

If f and g are continuous functions on [0,a] satisfying f(x)=(a-x) and g(x)+g(a-x)=2 , then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx .

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+ (g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

If f is a real valued differentiable function satisfying | f (x) - f (y) | le (x - y) ^(2) for all real x and y and f (0) =0 then f (1) equals :

Let f,g and h be differentiable function. If f(0)=1,g(0)=2, h(0)=3 and the derivatives of their pair wise products at x = 0 are (fg)'(0)=6,(gh)'(0)=4 and (hf)'(0)=5 then the value of ((fgh) ′ (0))/2 is

PRADEEP PUBLICATION-CONTINUITY AND DIFFERENTIABILITY-EXERCISE
  1. It is given that for the function 'f' given by : f(x) =x^3 + bx ^2 + ...

    Text Solution

    |

  2. Discuss the applicability of Rolle's Theorem for the function : f(x)...

    Text Solution

    |

  3. If f and g are differentiable functions for 0 le x le 1 such that f(0)...

    Text Solution

    |

  4. Verify Lagrange's mean value theorem for the function f(x) in the inte...

    Text Solution

    |

  5. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  6. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  7. Verify Lagrange's mean value theorem for the following functions f(x...

    Text Solution

    |

  8. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  9. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  10. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  11. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  12. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  13. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  14. Differentiate the function f(x) = sqrt(x-2)

    Text Solution

    |

  15. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  16. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  17. Verify Lagrange's mean value theorem for the following functions in th...

    Text Solution

    |

  18. Show that Lagrange's theorem is not applicable to the function f(x) = ...

    Text Solution

    |

  19. Discuss applicability of Lagrange's mean value theorem to the function...

    Text Solution

    |

  20. Verify the Lagrange's Mean Value Theorem for the functions: f(x) = |...

    Text Solution

    |