Home
Class 12
MATHS
If y = sin^-1((2x)/(1+x^2)) and -1 < x <...

If `y = sin^-1((2x)/(1+x^2))` and -1 < x < 1, ` find `dy/dx

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    PRADEEP PUBLICATION|Exercise EXERCISE|788 Videos
  • APPLICATIONS OF INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|162 Videos
  • DETERMINANTS

    PRADEEP PUBLICATION|Exercise EXERCISE|342 Videos

Similar Questions

Explore conceptually related problems

If y = sin^(-1) ((2x)/(1 + x^2)) + sec^(-1) ((1 + x^2)/(1 - x^2)) , prove that (dy)/(dx) = 4/(1 + x^2) , 0 < x < 1

Find dy/dx when y = sin^-1((2x)/(1+x^2)) + cos^-1 ((1-x^2)/(1+x^2)) when x in (0,1)

Sketch for the curve y = sin^(-1)( (2x)/( 1 + x^2))

If y=sin^-1((2x)/(1+x^2)) , then find dy/dx .

Find dy/dx when: y= sin^-1((2x)/(1+x^2))

Find dy/dx in the following: y = sin^-1(2x/(1+x^2))

If y = (log_(cosx) sin x)(log_(sinx) cosx)^-1 + sin^-1((2x)/(1+x^2)) , find dy/dx at x = pi/4

Fill in the blanks: If y = 2 tan^-1 x + sin^-1 ((2x)/(1+x^2)) for all x, then ………… le y le …….