Home
Class 12
MATHS
If f(x) is of the form f(x) = a + bx + c...

If f(x) is of the form f(x) = `a + bx + cx^2`, show that `underset(0)overset(1)intf(x) dx = 1/6 [f(0)+4f(1/2)+f(1)]`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos

Similar Questions

Explore conceptually related problems

Prove that : underset(0)overset(2a)intf(x) dx = underset(0)overset(2a)intf(2a-x)dx

True or False: If f(2a-x)=-f(x) , then underset0overset(2a)int f(x)dx=0 .

Evaluate: underset(-2)overset(2)int(f(x) dx where f(x) = {:{(2x-1,-2lexle1),(3x-2,1lexle2)

For each of the following paris of function f(x) and g(x), verify that: underset(0)overset(1)int[f(x)+g(x)]dx = underset(0)overset(1)intf(x)dx+underset(0)overset(1)intg(x)dx: f(x) = 1, g (x) = x^2

For each of the following functions f(x), verify that: underset(0)overset(0)intf(x) dx = underset(0)overset(1)intf(x) dx + underset(1)overset(2)intf(x) dx: f(x) = x^2+2

For each of the following functions f(x), verify that: underset(0)overset(0)intf(x) dx = underset(0)overset(1)intf(x) dx + underset(1)overset(2)intf(x) dx: f(x) = x+2

For each of the following functions f(x), verify that: underset(0)overset(0)intf(x) dx = underset(0)overset(1)intf(x) dx + underset(1)overset(2)intf(x) dx:f(x) = e^x

For each of the following paris of function f(x) and g(x), verify that: underset(0)overset(1)int[f(x)+g(x)]dx = underset(0)overset(1)intf(x)dx+underset(0)overset(1)intg(x)dx: f(x) = e^x,g(x) = 1

Prove that following: underset(1)overset(3)intf(x) dx when f(x) = |x-1|+|x-2|+|x-3|

Evaluate underset(-1)overset2int f(x)dx , where f(x)=|x+1|+|x|+|x-1|