Home
Class 12
MATHS
Evaluate: underset(-pi/2)overset(pi/2)in...

Evaluate:
`underset(-pi/2)overset(pi/2)int cos^4x dx` by using properties of definite integrals

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: underset0 overset(pi/2)int cos^4 x dx .

Prove that underset(0)overset(pi//2)int cos^4 x dx = (3pi)/16

Evaluate : int_0^(pi/4) log(1+tanx)dx , using properties of definite integrals.

Evaluate: underset(0)overset(pi//2)int(cos^2x)/(cos^2x+4sin^2x)dx

underset(-pi/4)overset(pi/4)int (dx)/(1+cos2x) is equal to:

Evaluate: underset(0)overset(pi)inte^(2x). Sin (pi/4 + x )dx

Evaluate underset0overset(pi//2)int (xsinxcosx)/(sin^4+cos^4x)dx

Using properties of integrals, evaluate: underset(-pi//2)overset(pi//2)intf(x) dx, where f(x) = sin |x| + cos |x|

Evaluate: underset0 overset(pi//4)int (sinxcosx)/(sin^4x+cos^4x)dx

underset(pi//6)overset(pi//2)int (cosx)/(sin(x/2)+cos(x/2))dx