Home
Class 12
MATHS
If f is periodic with period p, prove th...

If f is periodic with period p, prove that `undersetaoverset(a+p)int f(x)dx` is independent of a.

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos

Similar Questions

Explore conceptually related problems

True or False: If f is a periodic function with period p, then underseta overset(a+p)int f(x)dx is independent of 'a'.

If f is periodic with period p, prove that undersetpoverset(np)int f(x)dx=(n-1) underset0overset(p)int f(x)dx, for all ninN .

Prove that underset0oversetaint f(x)dx=underset0overseta int f(a-x)dx .

If f(x) is periodic function with period, T, then

d/(dx)(int f(x)dx)=

One value of int f'(x)dx is

If f(a+b-x)=f(x), then prove that underseta oversetbint xf(x)dx=(a+b)/2 underseta overset b int f(x)dx .

True or False: underseta oversetb int f(x)dx ne underseta oversetb int f(a+b-x)dx

If int f(x)dx=g(X)+C then

True or False: If f(2a-x)=-f(x) , then underset0overset(2a)int f(x)dx=0 .