Home
Class 12
MATHS
If f(a+b-x)=f(x), then prove that unders...

If f(a+b-x)=f(x), then prove that `underseta oversetbint xf(x)dx=(a+b)/2 underseta overset b int f(x)dx`.

A

`(a+b)/2undersetaoversetb int f(b-x)dx`

B

`(a+b)/2undersetaoversetbint f(b+x)dx`

C

`(b-a)/2 undersetaoversetbint f(x)dx`

D

`(a+b)/2undersetaoversetbint f(x)dx`.

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos

Similar Questions

Explore conceptually related problems

underseta oversetb int (logx)/x dx

True or False: underseta oversetb int f(x)dx ne underseta oversetb int f(a+b-x)dx

Prove that underset0oversetaint f(x)dx=underset0overseta int f(a-x)dx .

If f is periodic with period p, prove that undersetpoverset(np)int f(x)dx=(n-1) underset0overset(p)int f(x)dx, for all ninN .

For each of the following paris of function f(x) and g(x), verify that: underset(0)overset(1)int[f(x)+g(x)]dx = underset(0)overset(1)intf(x)dx+underset(0)overset(1)intg(x)dx: f(x) = 1, g (x) = x^2

For each of the following paris of function f(x) and g(x), verify that: underset(0)overset(1)int[f(x)+g(x)]dx = underset(0)overset(1)intf(x)dx+underset(0)overset(1)intg(x)dx: f(x) = e^x,g(x) = 1

For each of the following functions f(x), verify that: underset(0)overset(0)intf(x) dx = underset(0)overset(1)intf(x) dx + underset(1)overset(2)intf(x) dx: f(x) = x^2+2

For each of the following functions f(x), verify that: underset(0)overset(0)intf(x) dx = underset(0)overset(1)intf(x) dx + underset(1)overset(2)intf(x) dx: f(x) = x+2

For each of the following functions f(x), verify that: underset(0)overset(0)intf(x) dx = underset(0)overset(1)intf(x) dx + underset(1)overset(2)intf(x) dx:f(x) = e^x

underset(a+b)overset(b+c)int f(x)dx is equal to