Home
Class 12
MATHS
The value of int0^1 tan^(-1) ((2x-1)/(1+...

The value of `int_0^1 tan^(-1) ((2x-1)/(1+x-x^2))dx` is:

A

1

B

0

C

-1

D

`pi/4`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    PRADEEP PUBLICATION|Exercise EXERCISE|1126 Videos
  • DIFFERENTIAL EQUATIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|507 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    PRADEEP PUBLICATION|Exercise EXERCISE|279 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is (are)

Evaluate : int_0^1 sin^-1((2x)/(1+x^2))dx .

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

The value of int_(1)^(2)e^(x) [(1)/(x)-(1)/(x^(2))] dx is equal to

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Evaluate: int _0^1(tan^(-1)x)/(1+x^2)dx

int x^3 tan^-1 x^2 dx

Find the value of int_(-1)^1d/(dx)(tan^(-1)(1/x))dx