Home
Class 11
MATHS
If alpha, beta, gamma are roots of the e...

If `alpha, beta, gamma` are roots of the equations `x^(3)+px^(2) +qx+r= 0`, find the value of `alpha^(3)+beta^(3)+gamma^(3)`

Text Solution

Verified by Experts

The correct Answer is:
`-p^(3) +3pq-3r`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)

If alpha and beta are the roots of the equation x^(2)-7x+1=0 , then the value of 1/(alpha-7)^(2)+1/(beta-7)^(2) is :

If alpha and beta are the roots of the equation x ^(2) + alpha x + beta = 0, then

If alpha,beta,gamma are roots of the equation x^(2) (px+q)=r(x+1), then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is a) alpha beta gamma b) 1+(1)/(alpha)+(1)/(beta)+(1)/(gamma) c)0 d)None of these