Home
Class 11
MATHS
If roots of an equation x^(n)-1=0 are 1,...

If roots of an equation `x^(n)-1=0` are `1, a_(1), a_(2), …, a_(n-1)`, then the value of `(1-a_(1)) (1-a_(2))(1-a_(3))…(1-a_(n)-1)` will be

A

n

B

`n^(2)`

C

`n^(n)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1 = 4 and a_(n+1) = a_(n) + 4n for n ge 1 , then the value of a_(100) is

If a_(n+1)= (1)/(1-a_(n)) for n gt=1 and a_(3) = a_(1) then find the value of (a_(2001))^(2001) .

If a_(1), a_(2), a_(3),….,a_(n) are in AP and a_(1) = 0 , then the value of ((a_(3))/(a_(2)) + (a_(4))/(a_(3)) +...+(a_(n))/a_(n-1))-a_(2) ((1)/(a_(2)) + (1)/(a_(3))+...+(1)/(a_(n-2))) is equal to a) (n-2) + (1)/((n-2)) b) (1)/((n-2)) c)(n - 2) d)(n - 1)

If (1+x-2x^(2))^(6)=1+a_(1)x+a_(2)x^(2)+….+a_(12)^(x^(12)) , then find the value of a_(2)+a_(4)+a_(6)+….+a_(12) .

If a_(1), a_(2), …, a_(50) are in GP, then " "(a_(1)-a_(3)+a_(5)-…+a_(49))/(a_(2)-a_(4)+a_(6)-…+a_(50)) is equal to :

If (1+x+2x^(2))^(20) =a_(0)+a_(1)x+a_(2)x^(2) +a_(3)x^(3)+….+a_(40)x^(40), then find the value of a_(1)+a_(3)+a_(5)+….+a_(39) .

If a_(1), a_(2), a_(3),…….,a_(20) are in AP and a_(1) + a_(20) = 45 , then a_(1) + a_(2) + a_(3)+……+a_(20) is equal to

If a_(1), a_(2),a_(3), cdots , a_(2n+1) are in A.P then (a_(2n+1)-a_(1))/(a_(2n+1)+a_(1)) + (a_(2n)-a_(2))/(a_(2n)+a_(2))+cdots+ (a_(n+_2)-a_(n))/(a_(n+2)+a_(n)) is equal to