Home
Class 11
MATHS
If (ax^(2)+c) y + (a' x^(2) +c')=0 and x...

If `(ax^(2)+c) y + (a' x^(2) +c')=0` and x is a rational function of y and ac is negative, then

A

`ac'+ a'c= 0`

B

`(a)/(a')= (c )/(c')`

C

`a^(2)+c^(2)=a'^(2)+c'^(2)`

D

`a a'+c c'=1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x _(1) , y _(1)) and (x _(2) y _(2)) are the ends of a focal chord of y ^(2) = 4 ax, then x _(1) x _(2) + y_(1) y _(2) is equal to :

If the circles x^(2) +y^(2) + ax -6y + 4 =0 and x^(2) + y^(2) - 12x + 32 =0 touch externally each other and if the distance between the centres is equal to 5, then the values of a are

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

If a diameter of the circle x^(2) + y^(2) - 2x - 6y + 6 = 0 is a chord of another circle C having centre (2, 1), then the radius of the circle C is

If a,b,c,d,e and f are in GP, then the value of determinant |{:(a ^(2) , d ^(2) , x), ( b ^(2) , e^(2), y) , (c^(2) , f^(2), z}| depends on a) x and y b) x and z c) y and z d) independent of x,y,z