Home
Class 11
MATHS
If alpha, beta, gamma are roots of x^(3)...

If `alpha, beta, gamma` are roots of `x^(3) +px +r= 0` then `(1+ alpha)/(1-alpha) + (1+beta)/(1-beta)+ (1 +gamma)/(1-gamma)`=

A

`(3-p-3r)/(1+p+r)`

B

`(3+p+3r)/(1+p+r)`

C

`(3+r+p)/(1+p+r)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)

If alpha, beta, gamma are the roots of ax^(3) + bx^(2) + cx + d = 0 and |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| = 0, alpha != beta != gamma , then find the equation whose roots are alpha + beta - gamma, beta + gamma - alpha and gamma + alpha - beta

If alpha and beta are the roots of the equation x ^(2) + 3x - 4 = 0 , then (1)/(alpha ) + (1)/(beta) is equal to

If alpha and beta are the roots of 4x^(2) + 2x - 1 = 0 , then beta is equal to