Home
Class 11
MATHS
Let alpha and beta(alpha lt beta) be the...

Let `alpha and beta(alpha lt beta)` be the roots of the equation `ax^(2) + bx+c= 0`. If `lim_(x rarr m) (|ax^(2) +bx+c|)/(ax^(2) +bx+c)=1`, then

A

`(|a|)/(a)= -1, m lt alpha`

B

`a gt 0, alpha lt m lt beta`

C

`(|a|)/(a) =1, m gt beta`

D

`a lt 0 , m gt beta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha and cos alpha are the roots of the equition ax^(2) + bx + c = 0 , then

If alpha and beta are the roots of the equation x ^(2) + alpha x + beta = 0, then

Evaluate lim_(x rarr 1)(ax^(2)+bx+c)/(cx^(2)+bx+a)

Evaluate lim_(x rarr 0) (sin ax + bx)/(ax + sin bx)

If alpha and beta are the roots of the equation x ^(2) + 3x - 4 = 0 , then (1)/(alpha ) + (1)/(beta) is equal to

If the roots of the equation x ^(2) + 2 bx + c =0 are alpha and beta, then b ^(2) - c is equal to

Evaluate lim_(x rarr 0) (sin ax)/bx