Home
Class 11
MATHS
If alpha, beta and gamma are roots of 2^...

If `alpha, beta and gamma` are roots of `2^(33x-2) +2^(11x+2)= 2^(22x+1)+1` then `11(alpha + beta+gamma)`=

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of ax^(3) + bx^(2) + cx + d = 0 and |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| = 0, alpha != beta != gamma , then find the equation whose roots are alpha + beta - gamma, beta + gamma - alpha and gamma + alpha - beta

If alpha and beta are the roots of x ^(2) - ax + b ^(2) = 0, then alpha ^(2) + beta ^(2) is equal to

If alpha,beta,gamma are roots of the equation x^(2) (px+q)=r(x+1), then the value of determinant |(1+alpha,1,1),(1,1+beta,1),(1,1,1+gamma)| is a) alpha beta gamma b) 1+(1)/(alpha)+(1)/(beta)+(1)/(gamma) c)0 d)None of these

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

If alpha and beta are the roots of the equation x ^(2) + 3x - 4 = 0 , then (1)/(alpha ) + (1)/(beta) is equal to

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)