Home
Class 11
MATHS
If 0 lt alpha lt beta lt gamma lt (pi)/(...

If `0 lt alpha lt beta lt gamma lt (pi)/(2)`, then the equation `(x- sin beta)(x- sin gamma) +(x- sin alpha) (x- sin gamma) + (x- sin alpha) (x-sin beta) = 0` has

A

real and unequal roots

B

non-real roots

C

real and equal roots

D

real and unequal roots greater than 2.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha + 2cos beta+ 3 cos gamma = 0, sin alpha + 2sin beta +3 sin gamma= 0 and alpha + beta + gamma= pi , then sin 3alpha + 8 sin 3 beta + 27 sin 3 gamma =

If alpha, beta, gamma in [0, pi]"and if" alpha, beta, gamma are in AP, then (sin alpha - sin gamma)/(cos gamma - cos alpha) is equal to

If alpha+beta =pi//2andbeta+gamma=alpha , then tanalpha equals

Evaluate Delta=|[0, sin alpha, -cos alpha],[ -sin alpha, 0 , sin beta],[ cos alpha, -sin beta, 0]|

If alpha, beta, gamma are the roots of ax^(3) + bx^(2) + cx + d = 0 and |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| = 0, alpha != beta != gamma , then find the equation whose roots are alpha + beta - gamma, beta + gamma - alpha and gamma + alpha - beta

For 0 lt x le (pi)/(2) , show that x - (x^(3))/(6) lt sin x

If alpha, beta, gamma are the roots of the equation x^(3)+4x+1=0 , then find the value of (alpha+beta)^(-1) +(beta +gamma)^(-1) + (gamma+ alpha)^(-1)