Home
Class 11
MATHS
The value of (""^(n)C(0))/(n)+(""^nC(1))...

The value of `(""^(n)C_(0))/(n)+(""^nC_(1))/(n+1)+(""^(n)C_(2))/(n+2)+...+(""^(n)C_(n))/(2n)` is equal to

A

`overset(1)underset(0)intx^(n-1)(1-x)^(n)dx`

B

`overset(2)underset(1)intx^(n)(x-1)^(n-1)dx`

C

`overset(2)underset(1)intx^(n-1)(x+1)^(n)dx`

D

`overset(2)underset(1)intx^(n)(x+1)^(n-1)dx`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If n=5 , then (""^(n)C_(0))^(2)+(""^(n)C_(1))^(2)+(""^(n)C_(2))^(2)+......+(""^(n)C_(5))^(2) is equal to a)250 b)254 c)245 d)252

Prove that (""^(n)C_(0))/(1)+(""^(n)C_(2))/(3)+(""^(n)C_(4))/(5)+(""^(n)C_(6))/(7)+...=(2^(n))/(n+1)

The arithmetic mean of ""^(n)C_(0), ""^(n)C_(1), ""^(n)C_(2)…., ""^(n)C_(n) is

Prove that ""^(n)C_(0)""^(n)C_(0)-^(n+1)C_(1) ""^(n)C_(1)+^(n+2)C_(2)""^(n)C_(2)....=(-1)^(n)

If 1/(""^(4)C_(n))=1/(""^(5)C_(n))+1/(""^(6)C_(n)) , then find n