Home
Class 11
MATHS
Expand (a+b)^6-(a-b)^6. Hence find the v...

Expand `(a+b)^6-(a-b)^6`. Hence find the value of `(sqrt2+1)^6-(sqrt2-1)^6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (x+1)^6+(x-1)^6 . Hence, or otherwise evaluate (sqrt2+1)^6+(sqrt2-1)^6

Expand (x+1/x)^6

Find (a+b)^4-(a-b)^4 .Hence evaluate (sqrt3+sqrt2)^4-(sqrt3-sqrt2)^4

Evaluate (sqrt3+sqrt2)^6-(sqrt3-sqrt2)^6

Find (x+y)^4-(x-y)4 . Hence evaluate: (sqrt5+sqrt6)^4-(sqrt5-sqrt6)^4

Evaluate: (sqrt5+sqrt6)^4+(sqrt5-sqrt6)^4

(b)Find the domain of the function f(x)=sqrt(x+1)-:sqrt(6-x) .

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

Using binomial theorem expand (sqrt(x/a)-sqrt(a/x))^6 .

If the point (a,b) on the curve y= sqrt(x) is close to the point (1,0) , then the value of ab is a) 1/2 b) (sqrt2)/(2) c) 1/4 d) (sqrt2)/(4)