Home
Class 11
MATHS
Prove that (""^(n)C(0))/(1)+(""^(n)C(2))...

Prove that `(""^(n)C_(0))/(1)+(""^(n)C_(2))/(3)+(""^(n)C_(4))/(5)+(""^(n)C_(6))/(7)+...=(2^(n))/(n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_(0)""^(n)C_(0)-^(n+1)C_(1) ""^(n)C_(1)+^(n+2)C_(2)""^(n)C_(2)....=(-1)^(n)

Prove that ""^(n+1)C_(r+1)=(n+1)/(r+1)"^nC_r

The arithmetic mean of ""^(n)C_(0), ""^(n)C_(1), ""^(n)C_(2)…., ""^(n)C_(n) is

If n=5 , then (""^(n)C_(0))^(2)+(""^(n)C_(1))^(2)+(""^(n)C_(2))^(2)+......+(""^(n)C_(5))^(2) is equal to a)250 b)254 c)245 d)252

Prove that (C_(1))/(2)+(C_(3))/(4) +(C_(5))/(6)+….=2^(n)/(n+1) where C_(r) =^(n)C_(r)

If 1/(""^(4)C_(n))=1/(""^(5)C_(n))+1/(""^(6)C_(n)) , then find n

Prove that ""^nC_r+4^nC_(r-1)+6^(n)C_(r-2)+4^nC_(r-3)+^nC_(r-4)=^(n+4)C_r