Home
Class 11
MATHS
Prove that ""^(n)C(0)""^(n)C(0)-^(n+1)C(...

Prove that `""^(n)C_(0)""^(n)C_(0)-^(n+1)C_(1) ""^(n)C_(1)+^(n+2)C_(2)""^(n)C_(2)....=(-1)^(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (""^(n)C_(0))/(1)+(""^(n)C_(2))/(3)+(""^(n)C_(4))/(5)+(""^(n)C_(6))/(7)+...=(2^(n))/(n+1)

Prove that ""^(n+1)C_(r+1)=(n+1)/(r+1)"^nC_r

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Find the sum ""^(n)C_(0)+""^(n)C_(4)+^(n)C_(8)....

The arithmetic mean of ""^(n)C_(0), ""^(n)C_(1), ""^(n)C_(2)…., ""^(n)C_(n) is

If n=5 , then (""^(n)C_(0))^(2)+(""^(n)C_(1))^(2)+(""^(n)C_(2))^(2)+......+(""^(n)C_(5))^(2) is equal to a)250 b)254 c)245 d)252