Home
Class 11
MATHS
The coefficient of t^(2) in the expansio...

The coefficient of `t^(2)` in the expansion of `1 cdot (1+t)^(20)+ 2t (1+t)^(19)+3t^(2)(1+t)^(18)+….+20t^(20) (1+t)+21t^(21)` is

A

a) 141

B

b) 231

C

c) 272

D

d) 371

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = ( 2 t)/( 1 + t^(2)), y = (1 - t^(2))/( 1 + t ^(2)) then find ( dy)/( dx) at t = 2

The solution of int_(sqrt2)^(x) (dt)/(t sqrt( t^2 -1) )= (pi)/(12) is a)1 b)2 c)3 d)4

If x = ( 3t)/( 1 + t ^(3)) and y = ( 3 t ^(2))/( 1 +t ^(3)), then (dy)/(dx) at t =1 equals

In the expansion of (1+x)^(43) , the coefficients of (2 r+1)^(t h) and (r+2)^(t h) terms are equal, find r .

int_1^x 1/t d t

If x = sin t and y = tan t , then (dy)/(dx) is equal to a) cos ^(2) t b) (1)/( cos ^(3) t ) c) (1)/( cos ^(2) t ) d) sin ^(2) t